6.7A Prime Factorization

(7) EXPressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:

4(A) generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization;

exponential notation – used for writing repeated multiplication more efficiently through the use of bases and exponents.

factor tree – an organized diagram used for listing out pairs of factors of a number until reaching the prime factors of a number.

prime number – a whole number that has exactly two factors, 1 and itself.

composite number – a number greater than 1 with more than two factors.

factors - numbers that you multiply together to get another number.

factor strings – repeated multiplication by the same factor

Prime and Composite Numbers - the prime numbers are circled, the composite numbers are not circled

1	2	3	4	5	6	\widehat{O}	8	9	10
1	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31)	32	33	34	35	36	37)	38	39	40
(41)	42	(43)	44	45	46	(47)	48	49	50
51	52	53	54	55	56	57	58	(59)	60
61)	62	63	64	65	66	67)	68	69	70
71	72	(73)	74	75	76	77	78	(79)	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97)	98	99	100

My teacher's learning goals for me are that I will be able to:

- Build a factor tree to calculate the prime factors of any composite number.
- Generate equivalent expressions
 - o using factor strings.
 - o using exponential notation.
- Calculate the composite value when given a factor string or exponential notation.

I will master the learning goals for <u>Prime Factorization</u> with at least _____ mastery by:

1) Asking questions when I'm not sure of something and answering questions when I know the answer.

2)	
3)	
5)	

_are either prime or composite.

____and ______ are neither prime nor composite.

Every composite number can be written as a product of prime numbers.

Prime Factorization	I doand you follow along	and process	
٨ .	52	Β.	105
Factor String: Exponential Notation:		Factor String: Exponential Notation:	
C .	-360	D.	-216
Factor String:		Factor String:	

When the composite number that is being factored is <u>negative</u>, you must first factor out the **negative 1 (put a triangle around it).** In doing this, the number that you are now calculating the prime factorization for is positive.